HOMEWORK 9

Due date: Monday of Week 10

Exercises: 4, 5, 7, 10, 12, 13, pages 378-379

Recall the definition of the group $O(p, q)$. Let $p, q \geq 0$ be two integers and set $n = p + q$. Let $V = \mathbb{R}^n$ and $f_{p,q}: V \times V \to \mathbb{R}$ be the bilinear form defined by

(0.1)
$$
f_{p,q}(x,y) = \sum_{i=1}^p x_i y_i - \sum_{j=1}^q x_{p+j} y_{p+j},
$$

for $x = (x_1, ..., x_n)^t, y = (y_1, ..., y_n)^t \in V$. If we write

$$
s_{p,q} = \text{diag}(1,\ldots,1,-1,\ldots,-1),
$$

where there are $p 1$ in the diagonal and $q -1$ in the diagonal. Then

$$
f(x,y) = y^t s_{p,q} x.
$$

Consider the group

(0.2)
$$
O(p,q) = \{g \in GL_n(\mathbb{R}) : f(gx, gy) = f(x, y), \forall x, y \in V\}.
$$

If $q = 0$ and $p = n$, we often write $O(n, 0)$ as $O(n)$, which is just the orthogonal group defined in Chapter 8. The group $O(3, 1)$ is called the Lorentz group, which is used in special relativity.

Problem 1. (1) Show that
$$
O(p,q) = \{g \in GL_n(\mathbb{R}) : g^t s_{p,q} g = s_{p,q}\}.
$$

In this problem, we show that $O(2)$ and $O(1, 1)$ are different.

Problem 2. (1) For any $a \in \mathbb{R}^{\times}$, show that

$$
A(a) := \begin{pmatrix} \frac{a+a^{-1}}{2} & \frac{a-a^{-1}}{2} \\ \frac{a-a^{-1}}{2} & \frac{a+a^{-1}}{2} \end{pmatrix} \in O(1,1).
$$

Moreover, the map $A : \mathbb{R}^{\times} \to O(1,1)$ satisfies $A(ab) = A(a)A(b)$.

(2) For any

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(2),
$$

show that each entry a, b, c, d is bounded.

A better way to realize the group $O(1,1)$ is to use the bilinear form $f': \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by

$$
f'(x,y) = y^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} x.
$$

Consider the group $G = \{ g \in GL_2(\mathbb{R}) : f'(gx, gy) = f'(x, y), \forall x, y \in \mathbb{R}^2 \}.$

Problem 3. Construct a bijective map $\phi : G \to O(1,1)$ such that $\phi(gh) = \phi(g)\phi(h)$ for any $g, h \in G$.

Problem 4. Describe all elements of the above group G.

Reflection. Recall the formula of reflection on \mathbb{R}^3 endowed with the standard inner product. For a nonzero vector $v \in \mathbb{R}^3$, the reflection r_v about the plane P_v orthogonal to v is given by

$$
r_v : \mathbb{R}^3 \to \mathbb{R}^3
$$

$$
r_v(x) = x - 2 \frac{(v|x)}{||v||^2} v.
$$

We have $r_v \in O(3)$. It is a fact that any element $g \in O(3)$ is a product of certain reflections. The following is a generalization.

Let F be a general field with characteristic zero, and let V be a finite dimensional vector space over F. Let $B: V \times V \to F$ be a non-degenerate symmetric bilinear form. We can define the orthogonal group

$$
O(V, B) = \{ g \in GL(V) : B(gx, gy) = B(x, y), \forall x, y \in V \}.
$$

Let $q: V \to F$ be the map defined by $q(v) = B(v, v)$. It is not hard to recover B from q as we did in Section 8.1 in some special cases. (Try this!) The pair (V, q) is usually called a quadratic space. For $v \in V$ with $q(v) \neq 0$, we define $r_v : V \to V$ by

$$
r_v(x) = x - \frac{2B(x, v)}{q(v)}v.
$$

Then one can show that $r_v \in O(V, B)$.

Problem 5. Let $V = \mathbb{R}^n$, $B = f_{p,q}$ as defined in [\(0.1\)](#page-0-0), show that r_v defined above is in $O(V, B)$, which is just $O(p,q)$ defined in (0.2) .

It is helpful to keep in mind the following

Theorem 0.1 (Cartan-Dieudonné). Any element $g \in O(V, B)$ is a product of a finite number of reflections.

We won't prove the above theorem. For a proof, see [Pete Clark's notes on quadratic forms.](http://alpha.math.uga.edu/~pete/expositions2012.html)

We showed in class that product of two reflections is a rotation in $O(3,\mathbb{R})$. According the above theorem, any rotation in \mathbb{R}^3 is a product of two reflections. Try to check this directly.

Problem 6. Consider the plane curve C given by

$$
x^2 + xy + y^2 = 2.
$$

This means that $C = \{(x, y) \in \mathbb{R}^2 : x^2 + xy + y^2 = 2\}$. Find a rotation $\rho \in O_2(\mathbb{R})$ such that if we do the substitution

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \rho \begin{bmatrix} x \\ y \end{bmatrix},
$$

the equation of the curve becomes of the form

$$
ax'^2 + by'^2 = c.
$$

Determine the shape of C.